Kesehatan Perusahaan Tourism di Masa Pandemi Covid19 dengan Metode K Means Clustering
نویسندگان
چکیده
This research is aimed at seeing whether tourism companies listed on the Indonesia Stock Exchange during Covid-19 pandemic are still classified as healthy or not. Measurement of company's health level carried out using K-Means Algorithm. The results financial performance evaluation grouped algorithm will determine groups that performing well (healthy) and not (unhealthy) by determining based closest data distance to centroid. From analysis 32 Exchange, shows there 2 unhealthy companies, namely Pure Mas Company (MAMI) PT. Sarimelati Kencar (PZZA) 30 other in good health. Thus improvement development steps required for these .
منابع مشابه
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملSistem penunjang keputusan kelayakan pemberian pinjaman dengna metode fuzzy tsukamoto
Abstrak – Sistem penunjang keputusan (SPK) dapat digunakan untuk membantu penyelesaikan permasalahan atau pengambilan keputusan yang bersifat semi terstruktur atau terstruktur. Metode yang digunakan adalah Fuzzy Tsukamoto. PT Triprima Finance merupakan suatu perusahaan yang bergerak di bidang jasa peminjaman dengan jaminan berupa Buku Pemilik Kenderaan Bermotor atau mobil (BPKB). PT. Triprima F...
متن کاملAdaptive K-Means Clustering
Clustering is used to organize data for efficient retrieval. One of the problems in clustering is the identification of clusters in given data. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent...
متن کاملConstrained K-Means Clustering
We consider practical methods for adding constraints to the K-Means clustering algorithm in order to avoid local solutions with empty clusters or clusters having very few points. We often observe this phenomena when applying K-Means to datasets where the number of dimensions is n 10 and the number of desired clusters is k 20. We propose explicitly adding k constraints to the underlying clusteri...
متن کاملSubspace K-means clustering.
To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sosio-E-Kons
سال: 2021
ISSN: ['2085-2266', '2502-5449']
DOI: https://doi.org/10.30998/sosioekons.v13i2.10089